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ABSTRACT

We discuss the importance of feedback via photoionization and Compton heating on
the co-evolution of massive black holes (MBHs) at the center of spheroidal galaxies
and their stellar and gaseous components. We first assess the energetics of the ra-
diative feedback from a typical quasar on the ambient interstellar medium. We then
demonstrate that the observed MBH–σ relation could be established following the con-
version of most of the gas of an elliptical progenitor into stars, specifically when the
gas-to-stars mass ratio in the central regions has dropped to a low level ∼0.01 or less,
so that gas cooling is no longer able to keep up with the radiative heating by the
growing central MBH. A considerable amount of the remaining gas will be expelled
and both MBH accretion and star formation will proceed at significantly reduced rates
thereafter, in agreement with observations of present day ellipticals. We find further
support for this scenario by evolving over an equivalent Hubble time a simple, physi-
cally based toy model that additionally takes into account the mass and energy return
for the spheroid evolving stellar population, a physical ingredient often neglected in
similar approaches.
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1 INTRODUCTION

Elliptical galaxies are, with few exceptions, poor with re-
spect to interstellar gas (e.g. O’Sullivan et al. 2001). Also,
elliptical galaxies invariably contain central massive black
holes (MBHs), and there exists a tight relationship between
the characteristic stellar velocity dispersion σ and the black
hole mass MBH (Ferrarese & Merritt 2000; Tremaine et al.
2002), and between MBH and the host spheroid mass in
stars, M∗ (Magorrian et al. 1998). Are these two facts re-
lated? Here we focus on a scenario in which the mass of the
central MBH grows within gas rich elliptical progenitors un-
til star formation has reduced the gas fraction in the central
regions to of order 1 per cent of the stellar mass. Then ra-
diative feedback, during episodes when the luminosity from
the central MBH approaches its Eddington limit, heats and
drives much of the remaining gas out of the galaxy, limiting
both future growth of the MBH and future star formation
to low levels.

We show that for a typical quasar spectral energy dis-
tribution (SED) the limit on the central MBH produced

⋆ E-mail: sazonov@mpa-garching.mpg.de

by this argument coincides accurately with the observed
MBH-σ relation and we predict that the observed power
law should break down below 104M⊙ and above a few
109M⊙. In our calculations, we adopt the average quasar
SED derived by Sazonov et al. (2004, hereafter SOS) from
cosmic background radiation fields supplemented by in-
formation from individual objects. Of key importance is
that the UV and high energy radiation from a typical
quasar can photoionize and heat a low density gas up to
an equilibrium Compton temperature (TC ≈ 2 × 107 K)
that exceeds the virial temperatures of giant ellipticals; the
radiative effects on cluster gas are expected to be min-
imal (e.g. Ciotti, Ostriker & Pellegrini 2004) but the ef-
fects on gas within the host galaxy can be substantial. We
note that the present paper is complementary to those by
Ciotti & Ostriker (1997, 2001, hereafter CO97,01) in that,
while it does not attempt to model the complex flaring be-
havior of an accreting MBH with an efficient hydrodynami-
cal code, it does do a far more precise job of specifying the
input spectrum and the detailed atomic physics required to
understand the interaction between that spectrum and the
ambient interstellar gas in elliptical galaxies.

The evolutionary scenario considered could explain sev-
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eral key observational facts. First, that giant ellipticals are
old – they end their period of star formation early in cos-
mic time, since the radiative output from the central MBHs
limits (in cooperation with the energetic input due to star
formation) the gas content to be at levels for which ongo-
ing star formation is minimal. Secondly, gas rich, actively
star forming galaxies at redshift z ∼ 3, including Lyman
Break Galaxies and bright submillimeter SCUBA galax-
ies, generally exhibit only moderate active galactic nucleus
(AGN) activity (Steidel et al. 2002; Alexander et al. 2003;
Lehmer et al. 2004), indicating that their central MBHs
are still growing. This suggests that the formation of a
spheroid probably closely preceeds a quasar shining phase,
which finds further support in spectroscopic observations
showing that quasars live in a metal-enriched environment
(e.g. Hamann & Ferland 1999). The redshift evolution of
the quasar emissivity and of the star formation history in
spheroids is thus expected to be roughly parallel since z ∼ 3,
which also is consistent with observations (e.g. Haiman et al.
2004; Heckman et al. 2004).

We note that many authors have already recognized the
importance of feedback as a key ingredient of the mutual
MBH and galaxy evolution (among them Binney & Tabor
1995; CO97; Silk & Rees 1998; Fabian 1999; CO01;
Burkert & Silk 2001; Ciotti & van Albada 2001;
Granato et al. 2001; Cavaliere & Vittorini 2002; King 2003;
Wyithe & Loeb 2003; Haiman et al. 2004; Granato et al.
2004; Murray et al. 2004; Springel, Di Matteo & Hernquist
2004). What is new about this work is the stress on one
component of the problem that has had relatively little
attention – the radiative output of the central MBH.

We emphasize that the radiative output is not the only,
nor even necessarily the dominant mechanism whereby feed-
back from accretion onto central MBHs can heat gas in el-
liptical galaxies. Binney & Tabor (1995) have stressed that
the mechanical input from radio jets will also provide a sig-
nificant source of energy, and much detailed work has been
performed to follow up this suggestion. Strong evidence has
accumulated over recent years that the radiative losses of
hot gas in the 100 kpc-scale cores of galaxy clusters may be
counteracted by the mechanical input from the central gi-
ant elliptical galaxies, which usually host a low luminosity
AGN (e.g. Churazov et al. 2002). It is however not obvious
that all AGNs, and in particular luminous quasars, produce
radio jets, whereas all do appear to produce high energy
radiation. In any case, the two mechanisms are complemen-
tary, and in this paper we are exploring only the radiative
feedback. Given what we now know about the prevalence
of MBHs in ellipticals, the tight relationship between the
MBH mass and stellar mass, and the known efficiency for
converting accreted mass into electromagnetic output with
a specific spectrum, the consequence of radiative feedback
can now be estimated with reasonable accuracy, more easily
than can be acheived for the mechanical energy feedback.

This paper is organized as follows. In Section 2.1 we in-
vestigate the possibility of radiatively preheating a spherical
accretion flow within 1–100 pc from a MBH. In Section 2.2
we assess the conditions for a significant heating of inter-
stellar gas at larger distances from the central quasar. In
Section 3 we propose that radiative feedback could be a key
factor leading to the observed MBH–σ relation. In Section 4
we elaborate on this idea in the context of the MBH–galaxy

co-evolution, using a simple, but physically motivated, one-
zone model.

2 ENERGETICS OF THE RADIATIVE

FEEDBACK

Radiative feedback from accretion onto a MBH can affect
the accretion flow within the MBH sphere of influence, i.e.
in the central 1–100 pc of the host galaxy [see equations (14)
and (16)], as well as the interstellar gas at larger distances.
Adopting the average quasar SED from SOS, we consider the
effects arising in the former and later case in Section 2.1 and
2.2, respectively. We note that significant feedback effects
are expected only when the luminosity L of the central MBH
approaches the Eddington luminosity

LEdd = 1.3 × 1046 MBH

108M⊙

erg s−1, (1)

hence our use of a SED typical of quasars throughout.

2.1 Preheating of a spherical accreting flow onto a

MBH

Using hydrodynamical simulations and fiducial quasar
SEDs, CO01 demonstrated that accretion of gas onto the
central MBHs in elliptical galaxies cannot proceed stably at
sub-Eddington rates if the mass-to-radiation conversion effi-
ciency ǫ (≡ ∆Eγ/∆mc2) is high (0.1), as is characteristic of
quasars. During high luminosity episodes, the high energy
radiation, primarily X-rays, from the MBH unbinds the ac-
creting gas through Compton heating, which temporarily
leads to a decrease in the mass inflow rate and consequently
in the central luminosity. The SEDs utilized by CO01 cov-
ered a fair range, in general corresponding to a high Comp-
ton temperature. Our aim here is to verify whether the con-
clusions remain unaltered for the average quasar SED once
photoionization is fully taken into account. We note that our
treatment below is similar to previous semi-analytic stud-
ies of preheating of quasi-spherical accreting gas flows (e.g.
Cowie et al. 1978; Krolik & London 1983; Park & Ostriker
1999).

SOS (see their fig. 5) computed for the average quasar
SED the equilibrium temperature Teq of gas of cosmic chem-
ical composition as a function of the “ionization” parameter

ξ ≡ L

nr2
, (2)

where n is the hydrogen number density and r is the distance
from the MBH (note the use of the bolometric luminosity in
the definition of ξ). In the temperature range 2×104–107 K,
to a good accuracy

Teq(ξ) ≈ 2 × 102ξ K, (3)

while for ξ ≪ 100 and ξ ≫ 5 × 104, Teq ≈ 104 K and
2 × 107 K, respectively. Teq is the temperature at which
heating through Compton scattering and photoionization
balances Compton cooling and cooling due to continuum
and line emission, on the assumption that the plasma is in
ionization equilibrium, appropriate for the problem under
consideration. In Fig. 1 we plot lines of constant Teq on the
(r, nLEdd/L) plane for MBH = 108M⊙ and MBH = 109M⊙
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[note that the full expression of Teq(ξ) is used for this pur-
pose].

Suppose now that the gravitational potential is due to
the central MBH alone. Then the condition

5

2
kTeq(ξ) −

GMBHµmp

r
> 0 (4)

(here µ = 0.61 is the mean molecular weight) defines a sit-
uation where gas of density n, located at r, will be heated
to Teq by the central radiation and blown out of the MBH
potential 1. For given MBH, L/LEdd and r, gas with density
below a certain critical value, as implicitly given by equa-
tion (4), cannot accrete onto the MBH, which corresponds
to the dashed areas in Fig. 1.

We now specify the general conditions above to Bondi
accretion. Note that we are not assuming Bondi accretion
onto the central MBH, since the infalling material is ex-
pected to possess non-negligible angular momentum and
form an accretion disk or a more complicated central flow
near the MBH2. We thus regard the Bondi relations as an in-
dication of the flow rates into the central regions as a source
of mass for the central flows.

The Bondi flow is transonic inside the radius

RB =
GMBHµmp

2γkT
= 16pc

1

γ

MBH

108M⊙

(

T

106 K

)−1

, (5)

where T is the temperature at RB and the sound speed
cs =

√

γkT/µmp. We shall assume γ = 1 (isothermal flow)
for estimations below, the results depending very weakly on
γ. Comparison of equation (4) with equation (5) shows that
Bondi accretion of gas at temperature T can be disrupted if
the central luminosity L is sufficiently high that Teq(RB) ∼>
T , or equivalently L > Lcrit, where

Lcrit(T ) = ξ(T )R2
B(T )n(RB), (6)

and ξ(T ) is the ionization parameter corresponding to Teq =
T . If L > Lcrit, the gas in the vicinity of RB will experience
net radiative heating. On the other hand, the central lumi-
nosity is determined by the pre-existing conditions at RB

(so far as L < LEdd):

L = ǫc2 × 4πR2
B(T )cs(T ) × µmpnt(RB), (7)

where nt ≈ 2.3n is the total particle number density.
Fig. 2 (upper panel) shows the ratio L/Lcrit as a func-

tion of gas temperature for three values of the accretion
efficiency, ǫ = 0.01, 0.05 and 0.1. The two higher values
would correspond to accretion via a standard thin disk
(Shakura & Sunyaev 1973). The presented curves have been
obtained from equations (6) and (7) using the full expression

1 We note that in the case of the MBH emitting at near LEdd,
the radiation pressure will effectively reduce the MBH gravita-
tional potential, making possible an outflow in the directions not
screened by the central accretion disk for lower values of ξ than
implied by equation (4).
2 In the case of quasars, it is believed that accretion occurs via
a geometrically thin, optically thick disk, the presence of which
naturally explains both the fact that most of the radiative output
takes place at ultraviolet wavelengths and the inferred high radia-
tive efficiency (ǫ ≈ 0.1) of accretion (e.g. Yu & Tremaine 2002).
We briefly discuss the consequences of the presence of a central
accretion disk at the end of this Section.

Figure 1. Energy-based gas escape condition near a black hole of
mass MBH in the (r, n) plane, under the assumption that the gas
is in ionization equilibrium. Slanted lines correspond to constant
values of the ionization parameter as given by equation (3) for dif-
ferent equilibrium gas temperature Teq (labels along the lines).
Teq is shown up to the Compton temperature (1.9× 107 K) char-

acterizing the average quasar. The dashed area below the solid
curve given in equation (4) corresponds to gas configurations en-
ergetically unbound. In the upper and lower panel MBH = 108M⊙

and MBH = 109M⊙, respectively.

of Teq(ξ), and can be approximated in a limited temperature
range by the expression

L

Lcrit
≈ 6

ǫ

0.1

(

T

106 K

)−1/2

, 2 × 104 K < T < 107 K, (8)

which follows from equation (3). Note that the ratio L/Lcrit

does not depend on MBH. The fact that L > Lcrit over most
of the plot in Fig. 2 suggests that stationary accretion at
high rates is impossible, unless the gas supplied into the
Bondi sphere from outside is hotter than the Compton tem-
perature of the average quasar SED, i.e. T > TC ≈ 2×107 K.
If T < TC, the inflowing gas near RB will be heated and
driven out by the quasar radiation, and the MBH luminosity
will be reduced for the time required for significant amounts
of gas to cool and accumulate again in the central regions,
i.e. the result will be relaxation oscillations.

However, such a dramatic heating effect as described
above will only occur if the characteristic flow time at RB,

tdyn ≡ RB

(2GMBH/RB)1/2
≈ 7×104 yr

MBH

108M⊙

(

T

106 K

)−3/2

, (9)

is longer than the heating time scale

theat ≡
nt(RB)kT

Γ(T, ξ)
. (10)

Here Γ(T, ξ) is the plasma net heating (cooling) rate per
unit volume, which in the case of the average quasar SED
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Figure 2. Top panel: the ratio L/Lcrit as a function of T for
Bondi accretion, as given by equations (6) and (7). The label
above solid curves represents the adopted radiative efficiency.
L/Lcrit > 1 implies that stationary accretion is impossible due
to strong preheating. Bottom panel: ratio of the characteristic
heating and flow times at the Bondi radius, as given by equa-

tions (9) and (10), as a function of the gas temperature T for
ǫ = 0.1 and different values of L/LEdd (labels). Solid lines cor-
respond to net heating, while dashed lines to Compton heating
only. theat/tdyn > 1 implies that radiative heating is inefficient.

can be estimated from formulae given in Appendix A3.3.
Assuming ǫ = 0.1, we find that for L/Lcrit approximated by
equation (8)

Γ ≈ 3 × 10−23n2(RB) erg s−1 cm−3,

theat ≈ 2 × 103 yr
(

T

106 K

)−1/2 MBH

108M⊙

(

L

LEdd

)−1

,

theat

tdyn
≈ 0.03

(

L

LEdd

)−1 T

106 K
, 2 × 104 K < T < 107 K. (11)

A more accurate computation leads to the curves shown in
Fig. 2 (lower panel), giving the ratio theat/tdyn as a function
of T for different values of L/LEdd. Also plotted is the ratio
tC/tdyn for the case of pure Compton heating/cooling. One
can see that Compton preheating is important when T ∼>
106 K and L ∼> 0.1LEdd. For T < 106 K, preheating due to
photoionization is significant at even lower accretion rates.

The above discussion suggests that if quasars are fed
by warm (T < 107 K) interstellar gas from distances ∼10–
100 pc, their emission is expected to be significantly variable
on time scales ∼ tdyn ∼104–105 years. Only for gas tem-
peratures approaching 107 K, is stationary accretion at sub-
Eddington rates possible (see Fig. 2).

We note however that, if the final stages of accretion
occur via a geometrically thin or slim disk, as expected
for quasars (see Footnote 2), the above conclusion should

change as regards the variability time scale. Indeed, the char-
acteristic viscous time in a geometrically thin, optically thick
accretion disk is given by (Shakura & Sunyaev 1973)

tvisc(r) ∼ 3 × 105 yr
(

α

0.1

)−1 (

L

LEdd

)−2
(

M

108M⊙

)−2.5

×
(

r

0.01 pc

)3.5

, (12)

where α is the viscosity parameter. The above formula is
valid in the innermost, radiation pressure dominated zone
of the disk, where the main source of opacity is Thomson
scattering. Such disks, characterized by a radially constant
accretion rate, are unlikely to extend beyond 10−3–10−2 pc
because they would become self-gravitating (Toomre 1964;
Kolykhalov & Sunyaev 1980; Goodman 2003). Since the
quasar life time is expected to exceed 107 yr, the accretion
disk must be constantly replenished with gas of small angu-
lar momentum (presumably from a Bondi-type flow).

In the case of quasars (MBH ∼> 108M⊙, L ∼> 0.1LEdd),
self-gravity is expected to truncate the disk already in the
innermost zone, at the distance

Rsg ≈ 0.014 pc
(

α

0.1

)2/9 (

L

LEdd

)4/9
(

M

108M⊙

)7/9

, (13)

and the disk is expected to be stable against the thermal-
viscous instability (Burderi, King & Szuszkiewicz 1998).
Comparison of equations (9) and (12) implies that the
timescale on which accreting matter drifts from the outer
boundary of the disk to the MBH, tvisc(Rsg), can exceed
the characteristic dynamical time of the external Bondi-type
flow, tdyn(RB). In such a case, variations in the gas inflow
rate at RB as a result of preheating will affect the MBH ac-
cretion rate with a time delay ∼ tvisc, leading to variations
in the quasar luminosity also on time scales ∼ tvisc.

2.2 Heating of ISM in spheroids

The gravitational potential of the central MBH is overcome
by the potential of the host spheroid at distances larger than
the MBH radius of influence

RBH ≃ GMBH

σ2
≈ 10 pc

MBH

108M⊙

(

σ

200 kms−1

)−2

, (14)

where σ is the characteristic (virial) one-dimensional stel-
lar velocity dispersion in the galaxy. Comparison of equa-
tion (14) with equation (5) implies that RB < RBH when
T ∼> Tvir, where

Tvir ≃
µmpσ2

k
= 3.0 × 106 K

(

σ

200 km s−1

)2

(15)

is the galaxy virial temperature. Therefore, our discussion of
preheating in §2.1 pertains to situations where the accreting
flow has a temperature comparable to or higher than the
galaxy virial temperature.

Below we assess the conditions required for the cen-
tral MBH to significantly heat the interstellar gas over a
substantial volume of the galaxy, regardless of the type of
accretion flow established in the central regions. In this Sec-
tion we shall assume that the MBH has a mass as given by
the observed MBH-σ relation for local ellipticals and bulges
(Tremaine et al. 2002):
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MBH = 1.5 × 108M⊙

(

σ

200 km s−1

)4

. (16)

Note that this assumption will be dropped in §3, where we
attempt to predict the MBH-σ relation.

From equations (15) and (16) we can find the critical
density ncrit, defined by

Teq(L/ncritr
2) = Tvir, (17)

as a function of distance r from the galaxy center. Gas with
n < ncrit will be heated above Tvir and expelled from the
galaxy, whereas gas cooling will dominate over Compton
and photoionization heating if n > ncrit. We show in Fig. 3
the resulting heating diagrams on the (r, n) plane for two
galaxies, with σ = 180 and 320 kms−1, corresponding to
MBH = 108 and 109M⊙, respectively. Also shown in Fig. 3
is the n(r) line at which the cooling time tcool,0 of gas at
Tvir in the absence of radiative heating equals the charac-
teristic dynamical time, tdyn ≡ r/σ. Gas with density above
this line will cool down before reaching the galactic nucleus
if there are no heating mechanisms other than gravitational
compression. Comparison of the Teq = Tvir line with the
tcool,0 = tdyn one implies that if the gas within a few kpc of
the MBH is sufficiently tenuous to sustain a subsonic cool-
ing flow (so that tcool,0 > tdyn and T ≈ Tvir), the central
quasar emitting L ∼> 0.1LEdd will be able to heat the gas
above Tvir.

In practice, provided that Teq > Tvir, significant heat-
ing will take place only out to a certain distance that de-
pends on the luminosity and duration of the quasar out-
burst. Since the MBH releases via accretion a finite total
amount of energy, ǫMBHc2, there is a characteristic limiting
distance given by:

RC =
(

σTǫMBH

3πme

)1/2

= 400 pc
(

ǫ

0.1

)1/2
(

MBH

108M⊙

)1/2

= 500 pc
(

ǫ

0.1

)1/2 (

σ

200 km s−1

)2

. (18)

Inside this radius, each electron–proton pair will have re-
ceived at least 3kTC ≈ 6 keV of energy through Compton
scattering of hard X-rays from the MBH when it has ac-
creted mass MBH. RC is defined assuming that the only
heating mechanism is Compton scattering, and thus per-
tains to the limit of low density gas, fully photoionized by
the radiation from the MBH.

More relevant for the problem at hand is the distance
out to which low density gas will be Compton heated to
T ≥ Tvir:

R1 = RC

(

TC

Tvir

)1/2

= 1, 300 pc
(

ǫ

0.1

)1/2 σ

200 km s−1
. (19)

Yet another characteristic radius is the one within which
gas of critical density ncrit will be heated to T ≥ Tvir by
photoinization and Compton scattering:

R2 = R1

[

Γ(ncrit)

ΓC

]1/2

, (20)

where ΓC and Γ are the Compton and total heating rates,
respectively. Depending on the gas density (0 < n < ncrit),
the outer boundary of the “blowout region” will be located
somewhere between R1 and R2. The size of the heating zone
may be compared (see Fig. 3) with the galaxy effective (half-

Figure 3. The (r, n) plane for a galaxy with σ = 180 km s−1

(Tvir = 2.4 × 106 K, MBH = 108M⊙, upper panel), and with
σ = 320 km s−1 (Tvir = 7.7×106 K, MBH = 109M⊙, lower panel).
In the dashed area gas can be heated above Tvir by radiation
from the central MBH emitting at the Eddington luminosity. The
upper boundary of this area scales linearly with luminosity (as

shown by the dashed line corresponding to L = 0.1LEdd). From
left to right vertical lines correspond to RBH [equation (14)], RC

[equation (18)], R1 [equation (19)], R2 [equation (20)], and Re

[equation (21)]. The thin slanted line bounds from the above the
zone where the intrinsic cooling time of gas at Tvir is longer than
the dynamical time. See text for further explanation.

light) radius Re. We estimate from the results of Faber et al.
(1997) and Bernardi et al. (2003) that for early-type galax-
ies

Re ∼ 4, 000 pc
(

σ

200 km s−1

)2

, (21)

and note that in reality the correlation between Re and σ is
fairly loose.

The different characteristic distances defined above are
shown as a function of MBH in Fig. 4. One can see that the
radiative output of a black hole of mass < 107M⊙ can un-
bind the interstellar gas out to several Re in relatively low
luminosity elliptical galaxies. In the case of more massive
black holes/galaxies with MBH ∼108–109M⊙, the heating
will be localized to the innermost 0.3–0.5Re ; the gas fur-
ther out can be heated only indirectly, presumably through
shock waves propagating from the radiatively heated cen-
tral regions (see CO01). Remarkably, R2 ≈ 2–4 kpc, almost
independently of MBH. This results from a combination of
two opposite trends: the lighter the MBH is, the less to-
tal energy it emits, and the lower Tvir is, the more im-
portant becomes the role of photoionization heating com-
pared to Compton heating for gas with n∼<ncrit. We point
out that radiation characterized by the average quasar SED
could not unbind the gas in galaxies with σ > 500 kms−1
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Figure 4. Different characteristic heating radii, RC (dotted line),
R1 (short-dashed line), and R2 (long-dashed line), as a function
of MBH, compared with the general trend for the effective radius
of elliptical galaxies (solid line).

(MBH > 6 × 109M⊙) if such giant galaxies existed, because
then Tvir > TC ≈ 2× 107 K. On the contrary, the gas in the
central regions of such galaxies would be Compton cooled by
the radiation from the central quasar. Presumably it is a co-
incidence that the upper limit to the velocity dispersion for
real elliptical galaxies is close to the Compton temperature
found for the radiation from typical massive quasars.

We finally note that in the case of a quasar outburst
with given L and duration t, during which a relatively small
amount of mass ∆MBH ≪ MBH is accreted, the radiative
heating front will propagate out to

R̃1,2(L, t) = R1,2

(

L

LEdd

)1/2
(

t

2 × 107 yr

)1/2
(

ǫ

0.1

)−1/2

(22)

in time t, where R1,2 are given by equations (19), (20). It is
worth noting that in the case of Eddington-limited accretion,
the characteristic heating time at R1,2 is 2 × 107(0.1/ǫ) yr,
or approximately half the Salpeter time scale (time required
for the black hole mass to double).

3 THE PROPOSED ORIGIN OF THE MBH–σ
RELATION

We now address the central issue of this work, namely the
possibility that radiative feedback played the key role in
establishing the observed MBH–σ relation.

Below we elaborate on the following general idea. Before
the MBH grows to a certain critical mass, MBH,crit, its radi-
ation will be unable to efficiently heat the ambient gas, and
accretion onto the MBH will proceed at a high rate. Once the
MBH has grown to MBH,crit, its radiation will heat and expel

a substantial amount of gas from the central regions of the
galaxy3. Feeding of the MBH will then become self-regulated
on the cooling time scale of the low density gas. Subsequent
quasar activity will be characterized by a very small duty
cycle (∼0.001), as predicted by hydrodynamical simulations
(CO97, 01) and suggested by observations (Haiman et al.
2004; Heckman et al. 2004). MBH growth will be essentially
terminated.

Suppose that the galaxy density distribution is that of
a singular isothermal sphere, with the gas density following
the total density profile:

ρgas(r) =
Mgas

M

σ2

2πGr2
. (23)

Here Mgas and M are the gas mass and and total mass
within the region affected by radiative heating. The size of
the latter is uncertain but is less than a few kpc (see §2.2),
so that M is expected to be dominated by stars (M∗∼<M)
rather than by dark matter.

Radiation from the central MBH can heat the ambient
gas up to the temperature

Teq ≈ 6.5×103 K
L

LEdd

(

Mgas

M

)−1 MBH

108M⊙

(

200 km s−1

σ

)2

.(24)

This approximate relation is valid in the range 2×104–107 K
and follows from equations (3) and (23). Remarkably, Teq

does not depend on distance for the adopted r−2 density
distribution. We then associate the transition from rapid
MBH growth to slow, feedback limited MBH growth with
meeting the critical condition

Teq = ηescTvir, (25)

where ηesc ∼> 1 and Tvir is given by equation (15). Once
heated to Teq = ηescTvir, the gas will stop feeding the MBH.
We readily find that the condition (25) will be met for

MBH,crit = 4.6×1010M⊙ηesc

(

σ

200 km s−1

)4 LEdd

L

Mgas

M
.(26)

Therefore, for fixed values of ηesc, L/LEdd and Mgas/M we
expect MBH,crit ∝ σ4, similar to the observed MBH–σ re-
lation. According to our proposed scenario, once the MBH
has reached the critical mass, its accretion growth will be
effectively terminated so that at the present epoch MBH is
expected to be only slightly larger than MBH,crit.

Equally important information is contained in the nor-
malization of the MBH–σ relation. In fact, by comparing
equation (26) with equation (16) we find that the observed
relationship will be established if

Mgas

M∗

= 3 × 10−3η−1
esc

L

LEdd

M

M∗

. (27)

To satisfy the observed MBH–σ relation, the gas-to-stars ra-
tio is thus required to be relatively low and approximately
constant for spheroids with different masses at the epoch
when the MBH reaches its critical mass, although the ob-
servational uncertainty in the MBH–σ relation leaves some
room for a weak dependence of Mgas/M∗ on σ. As for the

3 Quite obviously, this effect will cooperate with the energy input
from stellar winds and SNII explosions in the forming galaxies,
however here we show that in principle the radiative feedback
from the MBH only is already sufficient to do the work.
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Figure 5. Thick solid line shows the predicted MBH–σ relation
resulting from the requirement that heating of the interstellar
gas by radiation from the central MBH at the Eddington limit be
below the level required to drive the gas from the galaxy (Teq ≤

Tvir). This upper bound on MBH is based on assuming a constant
gas fraction of Mgas/M = 0.003 and ηesc = 1. The thin solid line

corresponds to Mgas/M = 0.0015 and ηesc = 2. The dashed line
is the observed MBH ∝ σ4 relation in the range MBH = 106–a
few 109M⊙, extrapolated to lower and higher MBH values from
equation (16). The dotted lines are MBH ∝ σ3 and MBH ∝ σ5

laws.

Eddington ratio, it is reasonable to expect L/LEdd ∼0.1–1
based on hydrodynamical simulations (CO01) and observa-
tions of quasars (see e.g. Haiman et al. 2004 and references
therein).

We note that the above calculation was based on a spe-
cific (r−2) gas density profile for which ξ = L/nr2 = const.
This allowed us to avoid specifying the size of the radiative
heating zone. Being a reasonable assumption for the outer
regions of the galaxy, the r−2 profile is however expected
to flatten in the central ∼0.1Re region (see, e.g., CO01), so
that ξ will be increasing toward the MBH. Since it can be
sufficient to overheat the cooling gas in this central zone to
produce dramatic effects on the subsequent co-evolution of
the galaxy and its central MBH, our scenario certainly al-
lows the critical Mgas/M∗ ratio (defined say within Re) to
be several times larger than required by equation (27).

We note that the approximately linear Teq(ξ) depen-
dence [see equation (3)] was crucial to the above argu-
ment leading to the MBH,crit ∝ σ4 result. However, the
Teq(ξ) function becomes strongly nonlinear outside the range
2 × 104 K < Teq < 107 K, and a more general result can be
obtained if we consider the exact curve Teq(ξ) from SOS. In
Fig. 5 we show the predicted correlation between MBH,crit

and σ for ηesc = 1, L/LEdd = 1 and Mgas/M = 3×10−3, and
compare it with the observed relationship. We see that the
MBH ∝ σ4 behavior is expected to break down for MBH <

104M⊙ and also for MBH ∼> a few 109M⊙. In the same figure
we demonstrate the effect of the escape parameter ηesc. For
ηesc = 2 and the gas fraction decreased two-fold, the MBH–σ
relation is unchanged except that the high-mass cutoff oc-
curs at a lower mass. Specifically MBH,cut ≈ 3× 109M⊙η−2

esc .
It is perhaps interesting that the range of masses shown

in Fig. 5 for which MBH ∝ σ4 is obtained from considera-
tions of atomic physics (and the observed AGN spectra)
corresponds closely with the range of masses for which this
power law provides a good fit to the observations. Explor-
ing the MBH–σ relation observationally near 109M⊙ would
be a sensitive test of the importance of radiative feedback.
We note that other scenarios discussed in the literature also
predict deviations from the power law trend for the most
massive MBHs (e.g. Menci et al. 2003).

4 A SIMPLE, PHYSICALLY BASED

TOY-MODEL

In this Section we address in a more quantitative way the
MBH–galaxy co-evolution. We adopt a physically-motivated
one-zone model described in detail in Appendix A, focusing
in particular on the co-evolution of the galaxy gas budget
and stellar mass, a key ingredient of the proposed scenario
(see Sect. 3). Several aspects of this model have been already
described in Ciotti, Ostriker & Sazonov (2004) and Ostriker
& Ciotti (2004).

In particular, source terms for the galaxy gas mass
(equation [A1]) are due to cosmological infall (equation [A2])
and to stellar mass return from the evolving stellar popula-
tion (equation [A4]), while gas is subtracted from the total
budget by star formation (equation [A3]), gaseous MBH ac-
cretion (equation [A6]), and (possible) galactic winds when
the thermal energy of the ISM is high enough to escape
from the galaxy potential well (equation [A7]). Energy in-
put on the galactic gas is due to thermalization of SNII and
SNIa explosions, to thermalization of red giants winds due to
the galaxy stellar velocity dispersion (Sects. A3.1 and A3.2),
and to the radiative feedback from the accreting MBH (Sect.
A3.3). In case of galactic winds, we also consider adiabatic
cooling of the expanding gas (Sect. A3.4). Stars are formed
by gas cooling, while two different mechanisms are consid-
ered for the MBH growth, namely gaseous accretion and
coalescence of stellar remnants of massive stars (equation
A5). The galaxy potential well is determined only by the
dark matter potential well, which is assumed to be unevolv-
ing with cosmic time. In other words, here we are not con-
sidering merging between galaxies; finally, we note that in
the present toy-model the possibility to add a simple recipe
for chemical evolution is straightforward, so that one could
also test the model against scaling laws such as the Mg2–σ
relation.

We remark here that this kind of approach is not new
(e.g. Granato et al. 2004; Menci et al. 2003). However, our
scenario presents a few but important differences with re-
spect to the other cases. For example, in their modeliza-
tion of the AGN feedback Granato et al. (2004) (see also
Murray et al. 2004) assumed that the main role is played
by radiation pressure through scattering and absorption by
dust and scattering in resonance lines, while the energy re-
lease from the AGN to the ISM is due to thermalization
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of the kinetic energy of the outflow. In our case, instead,
the feedback is due to radiative heating. Note that energy
absorption is typically more efficient in driving winds than
momentum absorption.

Obviously, the results of such an approach should not be
“overinterpreted”: as common in all similar approaches, the
parameter space of the present model is huge (even though
several input parameters are nicely constrained by theory
and/or observations), thus the results of such kind of simu-
lations should be interpreted more as indications of possible
evolutionary histories than exact predictions. In particular,
the toy-model cannot directly test the ability of radiative feed-

back to produce the right final MBH mass, in fact, this can
be done only using numerical hydrodynamical simulations.
This is not surprising, because the toy-model, by construc-
tion, is a one zone model, and we already know that feedback
mechanisms are strongly scale-dependent, in the sense that
central galaxy regions react in a substantially different way
with respect to the whole system (CO97, CO01, Sect. 2.2).

As a consequence, one of the key input parameters in
our scheme is the adopted “quasar duty cycle” fEdd [equa-
tion (A6)], which essentially introduces a limit, fEddLEdd, on
the instantaneous central quasar luminosity that is smaller
than the Eddington luminosity. In the following, we present
the results for two different assumptions about fEdd. In the
first (Sect. 4.1), we distinguish two evolutionary phases:
a first phase (the “cold phase”, in which τcool/τdyn < 1)
that would be identified observationally with the Lyman
Break Galaxies, and a later phase (the “hot phase”, in which
τcool/τdyn > 1) that would be identified with normal, local
ellipticals which contain little gas, have low rates of star
formation and have a duty cycle (fraction of time during
which they appear as luminous AGNs) of roughly 0.1%.
Thus, in equation (A6) the duty cycle factor is known em-
pirically to be fEdd ≃ 0.01 in the cold phase (where roughly
a few per cent of Lyman Break Galaxies show central AGNs,
Steidel et al. 2002; Lehmer et al. 2004), while fEdd ≃ 0.001
in the hot phase. It is important to note that the last value
is suggested by both numerical simulations (CO01) and ob-
servations (Haiman et al. 2004).

A different model is also explored (Sect. 4.2), in which
fEdd is kept fixed to 1 over all the simulation. This case will
adequately demonstrate the effects of radiative feedback on
the toy-model evolution.

4.1 Models with reduced fEdd

With the above remarks in mind, here we present a few
representative simulations primarily aimed at investigating
whether there exists a specific evolutionary phase character-
ized by a gas-to-star mass ratio of the order of the factor in
equation (27), required to obtain the right MBH–σ relation.
The time evolution of the quantities shown in Figs. 6–8 refers
to a galaxy reference model characterized by Re = 4kpc
and a halo (constant) circular velocity of 400 km s−1; the
total mass of the gas infall is 1011M⊙, and the characteris-
tic infall time is 2Gyr. Other relevant simulations param-
eters are α∗ = 0.3 in equation (A3), βBH,∗ = 1.5 × 10−4

in equation (A5), ǫ = 0.1 in equation (A17), ηSN = 0.5 in
equation (A27), and finally ηesc = 2 in equation (A7). The
initial black hole mass is assumed to be 10M⊙, and the duty-

Figure 6. Reference model. Panel a: mass infall rate (solid
line) and stellar mass formation rate (dotted line). Panel b: total
(gaseous plus stellar remnants) MBH accretion rate (solid line),
Bondi accretion rate (dotted line), Eddington accretion rate (re-
duced by the duty-cycle factor fEdd, dashed line). Panel c: total
infall mass (solid line), total stellar galaxy mass (dotted line), to-
tal galaxy gas mass (short-dashed line); the nearly horizontal line
is the escaped gas mass. Panel d: total MBH mass (solid line), to-
tal mass gaseously accreted (dotted line), MBH mass originated
from stellar remnants (dashed line).

cycle is fixed according to the prescription of the “cold/hot”
phases described above.

While a complete description of the toy-model behav-
ior for different choices of the input parameters is outside
the scope of this paper, here we remark that after an ini-
tial “cold” phase dominated by gas infall, as soon as the gas
density becomes sufficiently low (Fig. 6c), and correspond-
ingly the cooling time becomes longer than the dynamical
time (Fig. 7d), the gas heating dominates, and the galaxy
switches to a “hot” solution (Fig. 8). The gas mass/stellar
mass ratio at that moment (∼ 0.003, Fig. 7c) is very near
with the value inferred in Section 3 from the argument lead-
ing to the right MBH–σ relation. Note also how the gas con-
tent of the present day “galaxy” is in nice agreement with
observations. It proves that if fEdd is sufficiently small (as
in the present case), the accretion is Eddington (rather than
Bondi) limited (equation [A6]) throughout the MBH–galaxy
co-evolution, and then our model increases the MBH mass
in the prescribed way independently of the specific feedback
mechanism. The obtained final black hole mass is in nice
agreement with the Magorrian relation (dotted line, Fig.
7b), but the significance of this result should not be overes-
timated since in reality the Magorrian relation is set (in our
scenario) by the MBH feedback.

An interesting experiment is obtained by reducing the
circular halo velocity and the infall mass in the reference
model: in these cases galactic winds are favoured. In other
words, small galaxies lose their gas content easily, in accor-
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Figure 7. Reference model. Panel a: time evolution of the Bondi
radius. Panel b: logarithm (base 10) of the ratio between gas mass
to stellar mass (solid line) and of the ration between MBH mass
to stellar mass (“Magorrian relation”, dotted line). Panel c: gas
density at the Bondi radius (solid line) and mean gas density
(dotted line). Panel d: logarithm (base 10) of the cooling time
(solid line) and heating time (dotted line) measured in terms of
the dynamical tyme.

Figure 8. Time evolution of the model gas temperature (solid
line). The model virial temperature is represented by the dotted
line, while the dashed line represent the “escape” temperature
(here assumed 2Tvir).

dance with the Mg2–σ and the Faber–Jackson relations and
with the hydrodynamical simulations of CO01. Remarkably,
the transition to the hot phase of these models happens for
Mgas/M∗ ∼ 0.01, similarly to the behavior seen in the case
of the more massive spheroid in the reference model. In other
models we have verified the role of the AGN photoionization
by artificially excluding the sources of stellar heating in the
reference model: in this case the galaxy gas temperature (af-
ter the initial cold phase) remains sub-virial (i.e. below the
horizontal dotted line in Fig. 8), without however cooling
down to the imposed lower temperature limit of 104 K, as
instead happens if we also exclude the MBH feedback. This
sort of cooperation between AGN feedback and stellar en-
ergy injection, i.e., the fact that substantial galactic winds in

general are due to stellar heating, and are reinforced by the

presence of the central AGN, was already found in numerical
simulations (CO01).

An important and apparently robust conclusion that
can be drawn from these simulations is that stellar heating
inevitably leads to a transition from cold to hot solution
when the gas-to-star mass ratio drops to of order 1 per cent
or somewhat less. Now, since a gas fraction of this order is
required for the radiative feedback from the central MBH to
limit its growth at the mass obeying the observed MBH–σ
relation (see Sect. 3), it is tempting to suggest that the MBH
reaches its critical mass, determined by radiative feedback,
approximately at the epoch of transition from cold to hot
galaxy phase.

We emphasize again that in the above models the radia-
tive output from the MBH does not strongly influence the
interstellar gas, since fEdd is assumed to be low and thus the
central luminosity is forced to be less than fEddLEdd ≪ LEdd

at any instant. In other words, these models allow persistent
moderate AGN activity but forbid quasar-type outbursts.

4.2 A model illustrating radiative feedback

In order to illustrate the effects of MBH feedback in the
context of the toy model, we now present a model in all
similar to reference model (Sect. 4.1), but in which fEdd =
1 over all the evolution. In this model we also reduce the
characteristic infall time from 2Gyr to 0.2 Gyr, and we set
βBH,∗ = 0 in equation (A5), i.e., we are neglecting black
hole growth due to accretion of stellar remnants.

Several differences are apparent with respect to the evo-
lution of the reference model and its variants. In fact, the
final black hole mass is now larger, the final amount of gas
in the galaxy is significantly lower, and the galaxy is found
in a permanent wind state (excluding the very short initial
cold phase). Also, from Fig. 9b is apparent how the MBH
grows by Bondi accretion instead of being Eddington lim-
ited (again excluding the initial phase). The main difference,
however, is that now a very strong gas outflow is caused by
the MBH feedback rather than by energy input from the
evolving stellar population.

Most importantly, this model supports the argument
presented in Section 3 in that quasar radiative heating ter-
minates the MBH growth at a mass proportional to the gas
fraction at the critical epoch, i.e. when the MBH feedback
becomes important. The fact that in this particular simu-
lation the final black hole mass turns out to be about 2
orders of magnitude higher than the “Magorrian” mass is
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Figure 9. Model with fEdd = 1 and τinf = 0.2 Gyr. See Caption
of Fig. 6 for a description of the various curves. Note also how in
the hot phase MBH accretion is Bondi dominated.

due to the fact that the radiation from the central quasar
overheats the gas when its mass fraction is ∼ 10 per cent
(see Fig. 10b), much higher than a fraction of 1 per cent.
This happens in this model because the Eddington limited
growth of the black hole allowed it to reach a very high mass
while the galaxy gas content has not yet been reduced to low
levels.

An obvious problem with the models described in Sec-
tions 4.1 and 4.2 is that the parametrization of the MBH
accretion rate and luminosity in terms of the time aver-
aged fEdd factor is a very poor substitute for considering the
real, time dependent problem. Nevertheless, we believe that
the models assuming a small fEdd and the model in which
fEdd = 1 nicely complement each other and provide impor-
tant clues to the real picture of MBH–galaxy co-evolution.
Specifically, the first kind of models demonstrate that there
is indeed a well defined phase in galactic evolution when
the gas-to-stars mass ratio is of the order of 1 per cent –
it corresponds to the transition from cold to hot solution.
On the other hand, the fEdd = 1 model demonstrates how
the MBH radiative feedback can be efficient if the central
quasar switches on at a near Eddington luminosity. Taken
together, these models suggest that a major quasar outburst
occuring approximately at the beginning of the hot galaxy
phase, when Mgas/M∗ ∼ 0.01 or somewhat less, can lead to
a significant degassing of the galaxy and termination of the
MBH growth at the mass required by the MBH–σ relation.

5 DISCUSSION AND CONCLUSIONS

In this paper we explore the possible role of AGN radia-
tive feedback in the co-evolution of MBHs at the center of
spheroids and their stellar and gaseous components. The
feedback is due to a combination of photoionization and

Figure 10. Same model as in Fig. 9. See Caption of Fig. 7 for a
description of teh various curves.

Figure 11. Temperature evolution of the model in Figs. 9 and
10. See Caption of Fig.8 for a description of the various curves.
Note how the galaxy is found in a permanent wind phase after
≃ 1 Gyr.

Compton heating. In our calculations we adopt (from the
work of SOS) a broad-band spectral energy distribution
that corresponds closely with the radiative output of typ-
ical quasars.

We first investigate (Sect. 2.1), based on energetic con-
siderations, whether the radiative output of the central
MBH can significantly affect a Bondi-type accretion flow in
the central 1–100 pc of a galaxy. In agreement with previous
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studies, we find that if the accretion is radiatively efficient
and proceeds at a subcritical rate, as expected of quasars,
the mass inflow rate and the MBH luminosity are expected
to oscillate on time scales ∼ 104–105 yr as a result of gas pre-
heating, unless the temperature of the supplied interstellar
gas approaches the Compton temperature of the radiation
field (2 × 107 K). We also note that if a central accretion
disk extends beyond ∼ 0.001–0.01 pc from the MBH, then
preheating of the external, hot flow may still lead to varia-
tions in the MBH accretion rate, but on longer time scales
(up to millions of years), determined by the characteristic
drift time in the disk.

Using similar energetic considerations, we then assess
the effect of the MBH radiative feedback on the main vol-
ume of the host galaxy (Sect. 2.2). We demonstrate that
the radiative output from a MBH growing by radiatively
efficient accretion can unbind the ambient interstellar gas,
provided it is tenuous enough, out to a maximum distance
of a few kpc, which would typically amount to a significant
fraction of the effective radius for giant ellipticals and to a
few effective radii for smaller spheroids.

We then discuss (Sect. 3) a possible origin of the ob-
served MBH–σ relation based on the hypothesis that the ra-
diative output from the growing MBH will eventually heat
the ambient interstellar gas above the virial temperature
and expel most of it, limiting both future growth of the
MBH and future star formation to low levels. We demon-
strate that if the gas-to-stars mass ratio drops to ∼<1 per
cent in the central regions of spheroids at a certain stage of
their evolution, then the radiative feedback from the cen-
tral MBH switched on as a bright quasar will terminate its
growth at the mass obeying the observed MBH–σ relation.
Furthermore, we predict that the observed power law should
break down for black hole masses below 104M⊙ and above
a few 109M⊙. These considerations however leave open the
question as to why the gas fraction should be of the above
order when the MBH reaches the critical mass.

In order to obtain a better insight into the co-evolution
of gas, stars and the central MBH over the Hubble time we
explore a simple but physically based one-zone toy model
(Sect. 4). A robust result obtained from the simulations is
that when the gas mass fraction has been reduced by star
formation to of order 1 per cent or somewhat less, a transi-
tion from cold to hot solution takes place, both in the case
of massive protogalaxies that would evolve into the present
day giant ellipticals and in the case of smaller spheroids.
This transition occurs primarily as a result of gas heating
due to the evolving galaxy stellar component in its various
forms (stellar winds thermalization, SNII and SNIa explo-
sions), while the AGN heating is also expected to contribute
at some level.

The near coincidence of the gas fraction correspond-
ing to the beginning of the hot galactic phase with that
[equation (27)] required by our argument leading to the cor-
rect MBH–σ relation offers the possibility of the following
evolutionary scenario. At the early stages of galaxy evolu-
tion when the protogalactic gas is dense and cold, active
star formation is accompanied by the growth of a central
black hole. The black hole however is not massive enough to
produce a strong heating effect on the ambient, dense gas,
even during episodes when it shines near at the Eddington
limit. This cold phase would be identified observationally

with the Lyman Break Galaxies and bright submillimeter
galaxies, which are characterized by high star formation rate
and moderate AGN activity. The cold phase ends when the
gas-to-stars mass ratio has been reduced to ∼ 0.01, when
the energy input from the evolving stellar population and
possibly from the central MBH heat the gas to a sub-virial
temperature. The MBH continues to grow actively during
this transitional epoch (perhaps more actively than before)
because there are still sufficient supplies of gas for accre-
tion, and soon reaches the critical mass (obeying the MBH–
σ relation), when the MBH radiative output causes a major
gas outflow. This phase would be identified with the ma-
jor quasar epoch. The subsequent evolution is passive and
characterized by very low AGN activity and a duty cycle re-
duced by a factor of ten to 0.001, and this late phase would
be identified with the present day elliptical galaxies.

This scenario is admittedly tentative and not the only
possible one, and should be verified by observations and
more detailed computations. In particular, it should be eluci-
dated as to why the MBH does not grow to an excessive mass
during the cold galactic phase, a key assumption implicitly
made above. Possibly this does not happen, as also suggested
in other works (e.g. Archibald et al. 2002), just because the
stellar spheroid is formed too rapidly even compared to an
Eddington limited growth of the MBH from an initial stellar
mass up to 108–109M⊙, which takes ∼<1Gyr. Alternatively,
early MBH growth may be characterized by some duty cycle
determined by the poorly understood physics of gas supply
and accretion on to protogalaxies.

A proper investigation of the importance of radiative
heating on the MBH–galaxy co-evolution, based on high spa-
tial hydrodynamical numerical simulations and adopting the
specification of the input spectrum and atomic physics from
this work, is now in progress (Ciotti & Ostriker, in prepara-
tion).
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APPENDIX A: A TOY MODEL FOR THE MBH

GROWTH

A1 The equations

The equations describing the evolution of the physical quan-
tities considered in the present toy-model are

Ṁgas = Ṁinf − Ṁ∗ + Ṁrec − ṀBH − Ṁesc, (A1)

Ṁinf =
Mgal

τinf
exp

(

− t

τinf

)

, (A2)

Ṁ∗ =
α∗Mgas

max(τdyn, τcool)
− Ṁrec, (A3)

Ṁrec =

∫ t

0

Ṁ+
∗ (t′)W∗(t − t′) dt′, (A4)

where Ṁ+
∗ is the first term on the r.h.s. of equation (A3)

ṀBH = ṀBH,acc + βBH,∗Ṁ
+
∗ , (A5)

where

ṀBH,acc = min(fEddṀEdd, ṀB), (A6)

and finally

Ṁesc =







Mgas

τesc
, T ≥ ηescTvir,

0, T < ηescTvir.

(A7)

A2 Input physics

A2.1 Gas equilibrium distribution

The code is started by assigning the dark-matter halo circu-
lar velocity vc under the assumption of a (singular) isother-
mal distribution [see equation (23)], and the quantity τdyn

entering equation (A3) is defined as

τdyn ≡ 2πRe

vc
, (A8)

where Re is a characteristic scale-length that could be iden-
tified with the effective radius or the half-mass radius of the
gas and galaxy stellar distribution. For example, the radial
trend of the gas density is obtained by arbitrarily impos-
ing that all the gas mass is contained within 2Re, and it is
distributed as the dark matter halo:

ρ =
ρ̄e

3

(

Re

r

)2

. (A9)

The assumption above should not taken too literally, in the
sense that it is only a simple way to obtain a representative
value of the mean gas density ρ̄e: different choices would
lead to different values of ρ̄e for an assigned total gas mass.
In any case, as a consequence of our assumption, the mean

gas density within Re is given by

ρ̄e =
3Mgas

8πR3
e

. (A10)

The (mass-weighted) equilibrium gas temperature Tvir could
be obtained from the hydrostatic equilibrium and Jeans
equations. However it is well known that a gas distribution
as that in equation (A9) but untruncated (and so character-
ized by an infinite mass) would have the (constant) temper-
ature

Tvir =
µmpσ2

k
=

µmpv2
c

2k
, (A11)

where we recall that for the singular isothermal sphere σ2 =
v2

c/2, where σ is the (1-dimensional) halo velocity dispersion,
and µ = 0.61. For simplicity we use equation (A11) as an
estimate of the equilibrium gas temperature associated with
the density distribution in equation (A9).

http://aps.arXiv.org/abs/astro-ph/0409600
http://aps.arXiv.org/abs/astro-ph/0406070
http://aps.arXiv.org/abs/astro-ph/0409436
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A2.2 Gas cooling time

The gas mean cooling time within Re is defined as τcool ≡
E/ĖC , where

E =
3kρ̄eT

2µmp
(A12)

is the gas internal energy per unit volume,

ĖC = nenpΛ(T ) =
n2

t

4
Λ(T ) =

(

ρ̄e

2µmp

)2

Λ(T ), (A13)

where

Λ(T ) =
2.18 × 10−18

T 0.6826
+ 2.706 × 10−47T 2.976 erg cm3/s(A14)

(see Mathews & Bregman 1978, CO01). We thus obtain

τcool =
6µmpk

ρ̄e

T

Λ(T )
. (A15)

A2.3 Stellar physics

The gas recycled by the evolving stellar population is given
by equation (A4). The modulating (normalized) kernel is
given by

W∗(t) = R∗ × δ∗ − 1

τ0

(

τ0

t + τ0

)δ∗

, (A16)

where we adopt R∗ = 0.3, δ∗ = 1.36, τ0 = 108yr; thus, a
fraction R∗ of the stellar mass produced at any time step is
recycled at the end to the galaxy interstellar medium. The
function above is a fairly acceptable fit of the time dependent
mass return rate of a simple, passively evolving stellar pop-
ulation, adopted in Ciotti et al. (1991) (hereafter CDPR),
CO97, 01.

A2.4 MBH accretion physics

Concerning equations (A5) and (A6), we define

ṀEdd ≡ LEdd

ǫc2
, (A17)

where 0.001 ≤ ǫ ≤ 0.1 and LEdd is given in equation (1).
The Bondi accretion rate is given by

ṀB = 4πR2
BρBcs, (A18)

where RB is given by equation (5) and

c2
s =

(

∂p

∂ρ

)

isot

=
kT

µmp
. (A19)

An estimate of the gas density at RB, ρB, is obtained from
equation (A9) evaluated at r = RB

4.

4 Note that the Bondi accretion rate given by equations above
becomes irrelevant when the gas is colder than the virial tem-
perature, because the Bondi radius is then larger than the MBH
radius of influence. More appropriate in this case would be to
calculate the accretion rate for the conditions at the influence ra-
dius. However, for the adopted gas density profile the accretion
rate will in fact remain unchanged.

A3 Feedback and gas escape

In the following two sections we describe two different kinds
of heating that act on the galactic gas, plus the gas cooling:
note that we are not counting cooling twice, because the
cooling function in equation (A13) is used to determine the
gas cooling time only. Thus, we determine the gas temper-
ature at each time-step by integrating the equation for the
internal energy per unit volume

Ė = ĖH,SN + ĖH,w + ĖH,AGN − ĖC + Ėad +

3
Ṁinf λv2

esc − Ṁescc
2
s

16πR3
e

, (A20)

where λ is a dimensionless parameter ranging from 0.25 (cor-
responding to virial velocity) to 1; Ėad describes the adia-
batic cooling in case of gas escaping (Sect. A3.4), while ĖH,w

describes the energy input due to the thermalization of red-
giants wind (Sect. A3.2). As a reference value we use the
quantities within the half mass radius (here identified with
Re) and, accordingly, the gas internal energy is given by
equation (A12), while only half of the gas accretion/outflow
kinetic energy is considered. In particular, in the integration
of equation above we adopt a global fitting formula for the
quantity ĖH,AGN − ĖC (Sect. A3.3). From equations (A12)
and (A20)

T (t + ∆t) =
2µmpE(t + ∆t)

3kρ̄e(t + ∆t)
. (A21)

At each time-step a check on the attained gas temperature
is performed, and we force the gas temperature to remain
above the minimum value Tmin = 104 K. Energy (temper-
ature) integration is actually the last time-step in the inte-
gration cycle. When a new interation starts, we first check if
the new determined temperature is higher than the escape
temperature ηescTvir. If the condition is not satisfied (i.e.,
T < ηescTvir), gas escape is suppressed. On the contrary, if
T ≥ ηescTvir, we adopt

τesc ≡ 2Re

cs
(A22)

in equation (A7).
Note that an elementary application of the Virial The-

orem, coupled with the definition of escape velocity and un-
der the assumption that the gas is distributed as the dark
matter halo, would predict that its mass weighted escape
temperature correspond to ηesc = 4. However, this is cer-
tainly an upper limit, and we expect that feedback effects
will be important at much lower temperatures, say ≃ 2Tvir

or even less.

A3.1 SNII, SNIa, OB and red giants wind heating

We describe here the first two contributions to the gas heat-
ing in equation (A20). The supernova heating ĖH,SN =
ĖII + ĖIa is given by the sum of SNII and SNIa energy
injection. Due to the very short life-time of massive stars,
the SNII heating is assumed istantaneous.

We now compute the expected number of SNII events
from a new stellar mass added to the galaxy according to the
first term in the r.h.s of equation (A3). Let Ṁ+

∗ be the total
stellar mass assembled in the unit time, without considering
the successive mass losses. We adopt a Salpeter IMF distri-
bution, with the standard low mass cut-off M∗,i = 0.1M⊙,
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while for simplicity we assume an infinite value for the upper
mass:

Ψ = AM−(1+x) = Ṁ+
∗ (x − 1)Mx−1

∗,i M−(1+x), (A23)

with x = 1.35. The number of SNII events per unit time is
just given by the number of stars with M > MII = 8M⊙:

ṄII =

∫

∞

MII

Ψ dM =
(

1 − 1

x

)

Ṁ+
∗

M∗,i

(

M∗,i

MII

)x

. (A24)

The total energy released by the SNII per unit time is then
given by ṄIIESN (where ESN = 1051erg/s), while the ac-
tual gas heating is ηSNṄIIESN , where ηSN is an efficiency
factor. Note that the value of the efficiency ηSN is highly

uncertain, depending on the particular status of the ISM. In

addition, in our simple formalism in the factor ηSN > we

also consider the energy injected by stellar winds by the mas-

sive OB stars. In the computed models we adopt ηSN = 0.5.
The treatment of SNIa heating is more complicate, be-

ing caracterized by a delayed explosion with respect to the
star formation episode. We adopt here the same description
as in CDPR, CO97, CO01. Thus, if ṄIadt′ is the total num-
ber of SNIa that will explode at t ≥ t′ as a consequence of
the star formation episode at t′, and WIa(t− t′) the normal-
ized explosion rate, one obtains

ĖIa = ηSNESN

∫ t

0

ṄIa(t′)WIa(t − t′)dt′, (A25)

where for simplicity we adopted the same efficiency as for
SNII. Following CDPR

WIa(t) =
δIa − 1

τIa

(

τIa

t + τIa

)δIa

, (A26)

where δIa ≃ 1.4 − 1.6 and we arbitrarily assume τIa ≃ 0.5
Gyrs.

We do not enter here in the complicate problem of the
determination of the present rate and the total number of
SNIa explosions in a given stellar population: in the present
treatment we just assume that for each of the star forma-
tion episodes NIa = ϑIaNII . The actual value of ϑIa is fixed
by (arbitrarily) requiring that the standard solar propor-

tion is maintained, i.e., that SNIa provide 3/4 of the iron
in the ISM, while the remaining 1/4 is provided by SNII
(Renzini et al. 1993). Because each SNIa produces ≃ 10
times more Iron that a SNII, then ϑIa ≃ 0.3.

Thus, the gas heating per unit volume within Re due to
SNII, stellar winds from OB stars, and SNIa, is given by

ĖH,SN =
3ηSNESN(ṄII + ṄIa)

8πR3
e

, (A27)

Finally, thermalization of stellar winds emitted by red-giants
to the stellar velocity dispersion “temperature” is an impor-
tant contribution to the global energy budget of the ISM in
early type galaxies (see, e.g., CDPR). Here we describe this
term as

ĖH,w =
9Ṁrecv

2
c

32πR3
e

(A28)

i.e., we evaluate the energy input per unit volume inside Re.
Thus, the characteristic heating time due to the global

energy input of the evolving stellar population is

τheat,SN,w =
3kρ̄eT/2µmp

ĖH,SN + ĖH,w

. (A29)

A3.2 Adiabatic cooling

If the gas escape condition is satisfied, the escaping gas not
only carries out kinetic energy, but also decreases its in-
ternal energy in order to expand. We evaluate the cooling
due to gas expansion by using the First Law of Thermodi-
namics. In particular, the mechanical work of expansion is
given by −pdV . During the expansion the gas mass is con-
served, so that V = Mgas/ρ and dV = −Mgasdρ/ρ2. The
variation of internal energy (per unit volume, as required in
energy equation above) due to gas expansion is then given
by pMgasdρ/(V ρ2) = pd ln ρ. Then, from ρ ∝ r(t)−3, and by
assuming that the expansion velocity is given by the sound
velocity, we obtain

Ėad = −E
cs

Re
= −2

E

τesc
, (A30)

where we used the identity E = 3p/2 and as order of magni-
tude r ≃ 2Re. The equation above is integrated with time-
splitting. No adiabatic heating is considered in case of infall,
being considered as accretion of clouds.

A3.3 AGN radiative feedback

Using XSTAR (Kallman 2002) we compute the net volume
heating rate Ė of a cosmic plasma exposed to radiation char-
acterized by the average quasar SED adopted from SOS.
Photoionization equilibrium is assumed. Ė depends on gas
temperature T and on the ionization parameter ξ, which can
be determined from equations (2) and (A9) as follows:

ξ ≡ L

n(r)r2
=

3L

ρ̄eR2
e
, (A31)

where L = ǫc2ṀBH is calculated at each time-step from
equation (A6). Note that from equation (A9) ξ is indepen-
dent of radius (as far as the gas is optically thin).

The following furmula provides a good approximation
to Ė (all quantities are expressed in cgs system):

Ė = n2(S1 + S2 + S3), (A32)

where n is the H nucleus density (in number),

S1 = −3.8 × 10−27
√

T (A33)

are the bremsstrahlung losses,

S2 = 4.1 × 10−35(1.9 × 107 − T ) ξ (A34)

is Compton heating (cooling), and

S3 = 10−23 a + b (ξ/ξ0)
c

1 + (ξ/ξ0)c
(A35)

is the sum of photoionization heating, line and recombina-
tion continuum cooling.

a = − 18

e25(log T−4.35)2
− 80

e5.5(log T−5.2)2
− 17

e3.6(log T−6.5)2
, (A36)

b =
1.7 × 104

T 0.7
, (A37)

c = 1.1 − 1.1

eT/1.8 105
+

4 × 1015

T 4
, (A38)

and finally

ξ0 =
1

1.5/
√

T + 1.5 × 1012/
√

T 5
+
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4 × 1010

T 2

[

1 +
80

e(T−104)/1.5 103

]

. (A39)

The formula above is applicable in the temperature range
104 ≤ T ≤ 3 × 107 independently of the ξ value, except for
T < 2 × 104 when it breaks down at ξ < 0.01 (hydrogen
becomes neutral), but then S1, S2, S3 → 0.

For T > 3 × 107 K one can use the approximation Ė =
n2(S1 + S2).
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